The Roman Pantheon : Scale - Model Collapse Analyses
نویسندگان
چکیده
The Roman Pantheon is among the largest unreinforced masonry dome ever built and is an unparalleled example of the construction capabilities of the ancient Romans. As one of the most well-known buildings in the world, its preservation remains important because of its cultural and societal significance, and the methods used to assess the safety of historic masonry structures continue to be developed, particularly for three-dimensional vaulted forms. Through a study of the Roman Pantheon, this thesis compares analytical and experimental results on a :ioo scale model of the variable thickness, hemispherical dome. The model is created using additive manufacturing for accuracy. This thesis, using a physical scale model, quantifies the safety of the Roman Pantheon against the two most probable causes of collapse (i) deformation of the building geometry and (2) seismic activity. The structural behavior of the model is compared to analytical predictions of (1) spreading supports, simulating leaning walls that result from the dome thrust or settling of the foundations, and (2) tilting, a first-order approximation of horizontal ground acceleration. The experimental tests lead to the formation of a mechanism and collapse due to instability. High-speed imagery captures the observed collapse mechanisms and failure limits. Experimental results are compared to analytical predictions for hemispherical masonry domes. The results of the physical experiment demonstrate the potential for digitally fabricated scale models in approximating the behavior of three-dimensional structures with complex geometries. The low cost and rapid approach provides a useful method for validating analytical predictions of the limit states and collapse mechanisms of unreinforced masonry structures. Thesis Supervisor: John A. Ochsendorf Professor of Architecture and Civil and Environmental Engineering
منابع مشابه
Investigation of the Progressive Collapse Potential in Steel Buildings with Composite Floor System
Abnormal loads due to natural events, implementation errors and some other issues can lead to occurrence of progressive collapse in structures. Most of the past researches consist of 2- Dimensional (2D) models of steel frames without consideration of the floor system effects, which reduces the accuracy of the modeling. While employing a 3-Dimensional (3D) model and modeling the concrete slab sy...
متن کاملAn Investigation into the Pantheon in Bactrian Economic Documents
In the 90s, a remarkable number of manuscripts were found in Northern Afghanistan, including economic documents, legal documents, and letters, which have become an important resource for academic studies. This paper aims to investigate the Bactrian pantheon as reflected in the economic documents of this collection. At first, these economic documents and the pantheon mentioned in them are introd...
متن کاملEvaluation of the Droplet Collapsibility in Inhalation Drug Delivery through a 3D Computational Study
Background: Several multiphase flow analyses have been developed to predict the fate of particles used in inhalation drug delivery; however, the collapse of droplets during their passage through respiratory tract has not been investigated. Objective: To assess the probability of droplet collapse in the upper respiratory tract.Methods: A 3D model of mouth-to-second generation airway after the tr...
متن کاملPantheon: Exascale File System Search for Scientific Computing
Modern scientific computing generates petabytes of data in billions of files that must be managed. These files are often organized, by name, in a hierarchical directory tree common to most file systems. As the scale of data has increased, this has proven to be a poor method of file organization. Recent tools have allowed for users to navigate files based on file metadata attributes to provide m...
متن کاملThreat-Independent Column Removal and Fire-Induced Progressive Collapse: Numerical Study and Comparison
Progressive collapse is defined as the spread of an initial failure from element to element, eventually resulting in the collapse of an entire structure or a disproportionately large part of it. The current progressive collapse analyses and design methods in guidelines and codes focus on the alternate load path method. This method is suitable especially in the case of blast-induced progressive ...
متن کامل